Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 140, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915063

RESUMO

BACKGROUND: Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS: In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS: This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.


Assuntos
Chrysanthemum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Lignina/metabolismo , Filogenia , DNA , Regulação da Expressão Gênica de Plantas
2.
BMC Genomics ; 24(1): 87, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829121

RESUMO

BACKGROUND: Facility cultivation is widely applied to meet the increasing demand for high yield and quality, with light intensity and light quality being major limiting factors. However, how changes in the light environment affect development and quality are unclear in garlic. When garlic seedlings are grown, they can also be exposed to blanching culture conditions of darkness or low-light intensity to ameliorate their appearance and modify their bioactive compounds and flavor. RESULTS: In this study, we determined the quality and transcriptomes of 14-day-old garlic and blanched garlic seedlings (green seedlings and blanched seedlings) to explore the mechanisms by which seedlings integrate light signals. The findings revealed that blanched garlic seedlings were taller and heavier in fresh weight compared to green garlic seedlings. In addition, the contents of allicin, cellulose, and soluble sugars were higher in the green seedlings. We also identified 3,872 differentially expressed genes between green and blanched garlic seedlings. The Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment for plant-pathogen interactions, phytohormone signaling, mitogen-activated protein kinase signaling, and other metabolic processes. In functional annotations, pathways related to the growth and formation of the main compounds included phytohormone signaling, cell wall metabolism, allicin biosynthesis, secondary metabolism and MAPK signaling. Accordingly, we identified multiple types of transcription factor genes involved in plant-pathogen interactions, plant phytohormone signaling, and biosynthesis of secondary metabolites among the differentially expressed genes between green and blanched garlic seedlings. CONCLUSIONS: Blanching culture is one facility cultivation mode that promotes chlorophyll degradation, thus changing the outward appearance of crops, and improves their flavor. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system. This study increases our understanding of the regulatory network integrating light and darkness signals in garlic seedlings and provides a useful resource for the genetic manipulation and cultivation of blanched garlic seedlings.


Assuntos
Alho , Alho/genética , Reguladores de Crescimento de Plantas/metabolismo , Dissulfetos/metabolismo , Ácidos Sulfínicos , Transcriptoma , Plântula/genética , Regulação da Expressão Gênica de Plantas
3.
BMC Plant Biol ; 23(1): 47, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670371

RESUMO

BACKGROUND: As one of the ten most famous flowers in China, the chrysanthemum has rich germplasm with a variety of flowering induction pathways, most of which are photoperiod-induced. After treatment with DNA methylation inhibitors, it was found that DNA methylation plays an important role in flowering regulation, but the mechanism of action remains unclear. Therefore, in this study, curcumin, 5-azaC, their mixed treatment, and MET1-RNAi lines were used for transcriptome sequencing to find out how different treatments affected gene expression in chrysanthemums at different stages of flowering. RESULTS: Genomic DNA methylation levels were measured using HPLC technology. The methylation level of the whole genome in the vegetative growth stage was higher than that in the flowering stage. The methylation level of DNA in the vegetative growth stage was the lowest in the curcumin and mixed treatment, and the methylation level of DNA in the transgenic line, mixed treatment, and curcumin treatment was the lowest in the flowering stage. The flowering rate of mixed treatment and curcumin treatment was the lowest. Analysis of differentially expressed genes in transcriptomes showed that 5-azaC treatment had the most differentially expressed genes, followed by curcumin and transgenic lines, and mixed treatment had the fewest. In addition, 5-azaC treatment resulted in the differential expression of multiple DNA methylation transferases, which led to the differential expression of many genes. Analysis of differentially expressed genes in different treatments revealed that different treatments had gene specificity. However, the down-regulated GO pathway in all 4 treatments was involved in the negative regulation of the reproductive process, and post-embryonic development, and regulation of flower development. Several genes associated with DNA methylation and flowering regulation showed differential expression in response to various treatments. CONCLUSIONS: Both DNA methylase reagent treatment and targeted silencing of the MET1 gene can cause differential expression of the genes. The operation of the exogenous application is simple, but the affected genes are exceedingly diverse and untargeted. Therefore, it is possible to construct populations with DNA methylation phenotypic diversity and to screen genes for DNA methylation regulation.


Assuntos
Chrysanthemum , Curcumina , Transcriptoma , Metilação de DNA , Curcumina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores , Regulação da Expressão Gênica de Plantas
4.
Sci Rep ; 12(1): 22310, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566291

RESUMO

Chrysanthemum (Chrysanthemum moriforlium Ramat.) is one of the most popular flowers worldwide, with very high ornamental and economic values. However, the limitations of available DNA molecular markers and the lack of full genomic sequences hinder the study of genetic diversity and the molecular breeding of chrysanthemum. Here, we developed simple sequence repeat (SSR) from the full-length transcriptome sequences of chrysanthemum cultivar 'Hechengxinghuo'. A total of 11,699 SSRs with mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats were identified, of which eight out of eighteen SSR loci identified based on sixteen transcripts participated in carotenoid metabolism or anthocyanin synthesis were validated as polymorphic SSR markers. These SSRs were used to classify 117 chrysanthemum accessions with different flower colors at the DNA and cDNA levels. The results showed that four SSR markers of carotenoid metabolic pathway divided 117 chrysanthemum accessions into five groups at cDNA level and all purple chrysanthemum accessions were in the group III. Furthermore, the SSR marker CHS-3, LCYE-1 and 3MaT may be related to green color and the PSY-1b marker may be related to yellow color. Overall, our work may be provide a novel method for mining SSR markers associated with specific traits.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Transcriptoma/genética , DNA Complementar/metabolismo , Repetições de Microssatélites/genética , Flores/genética , Flores/metabolismo
5.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039834

RESUMO

Cultivated chrysanthemum (Chrysanthemum × morifolium Ramat.) is a beloved ornamental crop due to the diverse capitula types among varieties, but the molecular mechanism of capitulum development remains unclear. Here, we report a 2.60 Gb chromosome-scale reference genome of C. lavandulifolium, a wild Chrysanthemum species found in China, Korea and Japan. The evolutionary analysis of the genome revealed that only recent tandem duplications occurred in the C. lavandulifolium genome after the shared whole genome triplication (WGT) in Asteraceae. Based on the transcriptomic profiling of six important developmental stages of the radiate capitulum in C. lavandulifolium, we found genes in the MADS-box, TCP, NAC and LOB gene families that were involved in disc and ray floret primordia differentiation. Notably, NAM and LOB30 homologs were specifically expressed in the radiate capitulum, suggesting their pivotal roles in the genetic network of disc and ray floret primordia differentiation in chrysanthemum. The present study not only provides a high-quality reference genome of chrysanthemum but also provides insight into the molecular mechanism underlying the diverse capitulum types in chrysanthemum.

6.
BMC Plant Biol ; 21(1): 517, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749661

RESUMO

BACKGROUND: Flowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine. However, with increasing population and urbanization, water and land availability have become limiting for chrysanthemum tea production. Hydroponic culture enables effective, rapid nutrient exchange, while requiring no soil and less water than soil cultivation. Hydroponic culture can reduce pesticide residues in food and improve the quantity or size of fruits, flowers, and leaves, and the levels of active compounds important for nutrition and health. To date, studies to improve the yield and active compounds of chrysanthemum have focused on soil culture. Moreover, the molecular effects of hydroponic and soil culture on chrysanthemum tea development remain understudied. RESULTS: Here, we studied the effects of soil and hydroponic culture on yield and total flavonoid and chlorogenic acid contents in chrysanthemum flowers (C. morifolium 'wuyuanhuang'). Yield and the total flavonoids and chlorogenic acid contents of chrysanthemum flowers were higher in the hydroponic culture system than in the soil system. Transcriptome profiling using RNA-seq revealed 3858 differentially expressed genes (DEGs) between chrysanthemum flowers grown in soil and hydroponic conditions. Gene Ontology (GO) enrichment annotation revealed that these differentially transcribed genes are mainly involved in "cytoplasmic part", "biosynthetic process", "organic substance biosynthetic process", "cell wall organization or biogenesis" and other processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed enrichment in "metabolic pathways", "biosynthesis of secondary metabolites", "ribosome", "carbon metabolism", "plant hormone signal transduction" and other metabolic processes. In functional annotations, pathways related to yield and formation of the main active compounds included phytohormone signaling, secondary metabolism, and cell wall metabolism. Enrichment analysis of transcription factors also showed that under the hydroponic system, bHLH, MYB, NAC, and ERF protein families were involved in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. CONCLUSIONS: Hydroponic culture is a simple and effective way to cultivate chrysanthemum for tea production. A transcriptome analysis of chrysanthemum flowers grown in soil and hydroponic conditions. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system.


Assuntos
Chrysanthemum/genética , Flores/metabolismo , Folhas de Planta/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Folhas de Planta/genética , RNA-Seq , Solo , Transcriptoma/genética
7.
Physiol Mol Biol Plants ; 27(7): 1455-1468, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34366589

RESUMO

DNA methylation is the most important epigenetic modification involved in many essential biological processes. MET1 is one of DNA methyltransferases that affect the level of methylation in the entire genome. To explore the effect of MET1 gene silencing on gene expression profile of Chrysanthemum × morifolium 'Zijingling'. The stem section and leaves at the young stage were taken for transcriptome sequencing. MET1-RNAi leaves had 8 differentially expressed genes while 156 differentially expressed genes were observed in MET1-RNAi stem compared with control leaves and stem. These genes encode many key proteins in plant biological processes, such as transcription factors, signal transduction mechanisms, secondary metabolite synthesis, transport and catabolism and interaction. In general, 34.58% of the differentially expressed genes in leaves and stems were affected by the reduction of the MET1 gene. The differentially expressed genes in stem and leaves of transgenic plants went through significant changes. We found adequate amount of candidate genes associated with flowering, however, the number of genes with significant differences between transgenic and control lines was not too high. Several flowering related genes were screened out for gene expression verification and all of them were obseved as consistent with transcriptome data. These candidate genes may play important role in flowering variation of chrysanthemum. This study reveals the mechanism of CmMET1 interference on the growth and development of chrysanthemum at the transcriptional level, which provides the basis for further research on the epigenetic regulation mechanism in flower induction and development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01022-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...